香港六合彩-澳门六合彩-时时彩_百家乐平台_全讯网财富 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐赌博机玩法| 百家乐官网几点不用补| 七胜国际娱乐| 百家乐高手和勒威| 灌阳县| 百家乐账号变动原因| 百家乐官网开户代理| 百家乐赌机厂家| 百家乐网上真钱娱乐场开户注册| 在线百家乐官网代理| 至尊百家乐娱乐场开户注册| 百家乐官网国际娱乐场| 香港六合彩开奖记录| 百家乐官网在线赌场娱乐网规则| 波克棋牌免费下载| 百家乐代理每周返佣| 百家乐官网投注软件有用吗| 太阳城娱乐管理网| 太阳百家乐官网游戏| 华宝娱乐城| 博天堂百家乐官网| 赌百家乐官网到底能赌博赢| 百家乐群bet20| 谁会玩百家乐官网的玩法技巧和规则| 百家乐庄闲排| 线上百家乐官网网站| 龙博娱乐| 百家乐时时彩网站| 女神百家乐官网的玩法技巧和规则 | 威尼斯人娱乐备用622| 金博士百家乐官网的玩法技巧和规则 | 吉安县| 大发888 dafa888| 百家乐官网方案| 新皇冠娱乐城| 大发888 打法888游戏| 澳门百家乐如何算| 免费百家乐娱乐城| 最好的百家乐官网投注| 鼎龙娱乐城| 大发888网页版登陆|