香港六合彩-澳门六合彩-时时彩_百家乐平台_全讯网财富 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Graphical semiregular representation of finite group
作者:     供圖:     供圖:     日期:2024-04-09     來(lái)源:    

講座主題:Graphical semiregular representation of finite group

專(zhuān)家姓名:馮衍全

工作單位:北京交通大學(xué)

講座時(shí)間:2023年04月13日15:00-16:00

講座地點(diǎn):數(shù)學(xué)院三樓會(huì)議室

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

A digraph or a graph Γ is called a digraphical or graphical regular representation (DRR or GRR for short) of a group G respectively, if Aut(Γ) is regular on the vertex set V(Γ). A group G is called a DRR group or a GRR group if there is a digraph or a graph Γ such that Γ is a DRR or GRR of G. Babai and Godsil classified finite DRR groups and GRR groups in 1980 and 1981, respectively. Then a lot of variants relative to DRR or GRR, with some restrictions on (di)graphs or groups, were investigated by many researchers. We extend regular representation to semiregular representation. For a positive integer m, a group G is called a DmSR group or a GmSR group, if there is a digraphical or graphical m-semiregular representation of G, that is, a regular digraph or a graph Γ such that Aut(Γ) is semiregular on V(Γ) with m orbits. Clearly, D1SR and G1SR groups are the DRR and GRR groups. In this talk, we review some progress on DmSR groups and GmSR groups for all positive integer m, and their variants by restricting (di)graphs or groups.

主講人介紹:

馮衍全,北京交通大學(xué)二級(jí)教授,政府特殊津貼獲得者,獲教育部自然科學(xué)二等獎(jiǎng)。從事群、圖及互連網(wǎng)絡(luò)研究工作,在Journal of Combinatorial Theory, Series A、Journal of Combinatorial Theory, Series B、Journal of Algebra等國(guó)際著名期刊上發(fā)表學(xué)術(shù)論文150篇。主持完成國(guó)家自然科學(xué)基金10余項(xiàng),目前主持國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)、國(guó)際合作研究項(xiàng)目2項(xiàng)。擔(dān)任國(guó)際代數(shù)組合權(quán)威期刊Journal of Algebraic Combinatorics等編委,擔(dān)任中國(guó)數(shù)學(xué)會(huì)理事、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事、中國(guó)運(yùn)籌學(xué)會(huì)圖論組合學(xué)分會(huì)常務(wù)理事等。

澳门玩百家乐赢1000万| 百家乐官网最保险的方法| 闲和庄百家乐官网娱乐| 伟博百家乐现金网| 88娱乐城注册| 金宝博百家乐游戏| 真人百家乐官网信誉| 太阳城百家乐注册平台| 黄浦区| 山西百家乐用品| 百家乐官网折叠桌| 大发888网页| 丽景湾百家乐官网的玩法技巧和规则 | 在线百家乐官网合作| 威尼斯人娱乐城百家乐赌博| 希尔顿百家乐官网试玩| 大发888游戏平台稳定大发888| 百家乐官网技巧平注常赢法| 百家乐官网好多假网站| 水果机技巧规律| 博彩百家乐官网字谜总汇二丹东| 拉斯维加斯国际娱乐| 狮威百家乐娱乐平台| 百家乐官网投法| 巴林左旗| 澳门博彩有限公司| 澳门百家乐投注法| 最好的百家乐官网好评平台都有哪些 | 皇冠足球现金网| 网上百家乐骗人的吗| 百家乐官网注码法| 全讯网vc8888.com| 真人百家乐娱乐场| 淘金百家乐官网的玩法技巧和规则 | 网上百家乐官网哪家较安全| 六合彩开奖现场| 博之道百家乐官网的玩法技巧和规则 | 百家乐咋个玩的| 百乐坊娱乐城官网| 免费百家乐追号软件| 网络百家乐赌博视频|